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De�nition

If X is a discrete random variable, then the probability generating

function or simply generating function of X is

G (z) = E(zX ) =
∞∑
k=0

zkP(X = k).

Example. If X is the value of a roll with a fair 6-sided die, then

G (z) =
1

6
z1 +

1

6
z2 +

1

6
z3 +

1

6
z4 +

1

6
z5 +

1

6
z6.

If X ∼ PGEO(p), then

G (z) =
∞∑
k=0

p(1− p)kzk = p
∞∑
k=0

((1− p)z)k =
p

1− (1− p)z
.

Stochastics Illés Horváth Generating Functions



De�nition
Properties
Problems

De�nition

If X is a discrete random variable, then the probability generating

function or simply generating function of X is

G (z) = E(zX ) =
∞∑
k=0

zkP(X = k).

Example. If X is the value of a roll with a fair 6-sided die, then

G (z) =
1

6
z1 +

1

6
z2 +

1

6
z3 +

1

6
z4 +

1

6
z5 +

1

6
z6.

If X ∼ PGEO(p), then

G (z) =
∞∑
k=0

p(1− p)kzk = p
∞∑
k=0

((1− p)z)k =
p

1− (1− p)z
.

Stochastics Illés Horváth Generating Functions



De�nition
Properties
Problems

De�nition

If X is a discrete random variable, then the probability generating

function or simply generating function of X is

G (z) = E(zX ) =
∞∑
k=0

zkP(X = k).

Example. If X is the value of a roll with a fair 6-sided die, then

G (z) =
1

6
z1 +

1

6
z2 +

1

6
z3 +

1

6
z4 +

1

6
z5 +

1

6
z6.

If X ∼ PGEO(p), then

G (z) =
∞∑
k=0

p(1− p)kzk = p
∞∑
k=0

((1− p)z)k =
p

1− (1− p)z
.

Stochastics Illés Horváth Generating Functions



De�nition
Properties
Problems

Basic properties

Basic properties of the generating function:

G (1) =

∞∑
k=0

1kP(X = k) =
∞∑
k=0

P(X = k) = 1,

G (0) =
∞∑
k=0

0kP(X = k) = P(X = 0)

(keeping in mind that 00 = 1),

the sum is convergent for z ∈ [0, 1],

G (z) is analytic on [0, 1),

G (z) is increasing and convex on [0, 1].
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Example

Example. The generating function of PGEO(4/5) is

G (z) =
1− 4/5

1− 4z/5
=

1

5− 4z
.
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Mean and variance

Lemma

E(X ) = G ′(1),

D(X ) =
√
G ′′(1) + G ′(1)− (G ′(1))2.

Proof.

G ′(z)
∣∣∣
z=1

=
∞∑
k=0

(zk)′P(X = k)
∣∣∣
z=1

=
∞∑
k=0

kzk−1P(X = k)
∣∣∣
z=1

=

∞∑
k=1

kzk−1P(X = k)
∣∣∣
z=1

=
∞∑
k=1

kP(X = k) = E(X ).

The proof for the formula for D(X ) is similar.
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Recovering the original distribution

The original distribution can be entirely computed from the
generating function.

Lemma

P(X = k) =
G (k)(z)

∣∣
z=0

k!
,

where G (k) denotes the k-th derivative of G .

Speci�cally,

P(X = 0) = G (0),

P(X = 1) = G ′(0),

P(X = 2) =
G ′′(0)

2
etc.
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Further properties

Let X have generating function GX (z). What is the generating
function of X + 1?

GX+1(z) =
∞∑
k=0

P(X + 1 = k)zk = z
∞∑
k=1

P(X = k − 1)zk−1

= z
∞∑
k=0

P(X = k − 1)zk−1 = zGX (z).

Stochastics Illés Horváth Generating Functions



De�nition
Properties
Problems

Further properties

Let X have generating function GX (z). What is the generating
function of X + 1?

GX+1(z) =
∞∑
k=0

P(X + 1 = k)zk = z
∞∑
k=1

P(X = k − 1)zk−1

= z
∞∑
k=0

P(X = k − 1)zk−1 = zGX (z).

Stochastics Illés Horváth Generating Functions



De�nition
Properties
Problems

Further properties

Let X have generating function GX (z). What is the generating
function of 2X?

G2X (z) =
∞∑
k=0

P(2X = k)zk =
∞∑
k=0

P(X = k/2)(z2)k/2 =

∞∑
k=0,k even

P(X = k/2)(z2)k/2 =

l=k/2
=

∞∑
l=0

P(X = l)(z2)l = GX (z
2).
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Sum of two independent random variables

Theorem

If X and Y are independent discrete random variables with

generating function GX (z) and GY (z) respectively, then

GX+Y (z) = GX (z)GY (z).

Proof (sketch, through example). Let X and Y be the result of
rolling two fair 6-sided dice. Let's compute P(X + Y = 4).

P(X + Y = 4) =

P(X = 1,Y = 3) + P(X = 2,Y = 2) + P(X = 3,Y = 1) =

1

6
· 1
6
+

1

6
· 1
6
+

1

6
· 1
6
=

3

36
.
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Sum of two independent random variables

Let's also compute the coe�cient of z4 in GX (z)GY (z):

GX (z)GY (z) =

(
1

6
z1 +

1

6
z2 + · · ·+ 1

6
z6
)(

1

6
z1 +

1

6
z2 + · · ·+ 1

6
z6
)
.

We can get z4 by taking z1 from the �rst bracket and z3 from the
second bracket, or z2 · z2, or z3 · z1. The coe�cient of these terms
gives

1

6
z1 · 1

6
z3 +

1

6
z2 · 1

6
z2 +

1

6
z3 · 1

6
z1 =

3

36
z4.

The result of the multiplication of polynomials gives exactly the
probability we need.
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Deterministic numbers

Deterministic numbers can also be viewed as random variables: the
number k has generating function zk .

For example,
GX+1(z) = zGX (z)

follows directly from the previous lemma.
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Example - Binomial distribution

Let X ∼ BIN(n, p). Compute its generating function G (z).

X is the number of successes from n independent trials, so by
adding 1 for each success and 0 for each failure, X can be written as

X = Y1 + · · ·+ Yn,

where Y1, . . . ,Yn are iid Bernoulli variables with generating
function GY (z) = (1− p) + pz . So

G (z) = ((1− p) + pz)n.
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Example - Binomial distribution

On the other hand, G (z) can be computed directly from the
distribution of X :

G (z) =
n∑

i=0

(
n

i

)
pi (1− p)n−iz i .

Due to the binomial theorem, the two formulas are equivalent.

G (z) = ((1− p) + pz)n =
n∑

i=0

(
n

i

)
pi (1− p)n−iz i .

Stochastics Illés Horváth Generating Functions



De�nition
Properties
Problems

Example - Binomial distribution

On the other hand, G (z) can be computed directly from the
distribution of X :

G (z) =
n∑

i=0

(
n

i

)
pi (1− p)n−iz i .

Due to the binomial theorem, the two formulas are equivalent.

G (z) = ((1− p) + pz)n =
n∑

i=0

(
n

i

)
pi (1− p)n−iz i .

Stochastics Illés Horváth Generating Functions



De�nition
Properties
Problems

Sum with a random number of terms

Let X1,X2, . . . be independent, identically distributed discrete
random variables (iid for short) with common generating function
GX (z), and let N be a discrete random variable with generating
function GN(z), independent from all the X 's.

Let

Y = X1 + · · ·+ XN ,

that is, Y is a sum with a random number of terms. What is the
generating function of Y ?

Example. We have a blue and a red die, both are 6-sided and fair.
We roll the blue die once, then roll the red die a number of times
equal to the result of the blue roll. Finally we add all the results of
the red rolls. What are the possible values for the sum of the red
rolls?
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Sum with a random number of terms

Let N be the value of the blue die roll, and X1,X2, . . . be the
values of the red rolls. Then Y = X1 + · · ·+ XN is the sum of the
red rolls.

We aim to compute the generating function of Y .

We will apply total expectation according to the value of N.

If N = 1, then Y = X1, so it has generating function
GX (z) =

1

6
z1 + · · ·+ 1

6
z6.

If N = 2, then Y = X1 + X2, so it has generating function
(GX (z))

2.

If N = 3, then Y = X1 + X2 + X3, so it has generating function
(GX (z))

3 etc.
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Sum with a random number of terms

Altogether, we have

GY (z) = E(zY ) =
6∑

n=1

E(zY |N = n)P(N = n) =

1

6
GX (z) +

1

6
(GX (z))

2 + · · ·+ 1

6
(GX (z))

6.

Theorem

If X1,X2, . . . are iid discrete random variables with common

generating function GX (z), and N is a discrete random variable

with generating function GN(z), independent from all the X 's, and

Y = X1 + · · ·+ XN , then

GY (z) = GN(GX (z)).
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Example

Example. How many grandchildren will you have?

First, you will have a random number of children.

Then each of your children will have a random number of children.
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Summary

G (z) :=
∞∑
k=0

P(X = k)zk .

G (1) = 1, G (0) = P(X = 0), P(X = k) =
G (k)(0)

k!

E(X ) = G ′(1),D(X ) =
√
G ′′(1) + G ′(1)− (G ′(1))2

GX+Y (z) = GX (z)GY (z) for X ,Y independent

GX1+···+XN
(z) = GN(GX (z)) for X1,X2, . . . iid and N indep.

The theorem of total expectation applies for the generating function.
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Incomplete generating functions

Sometimes we work with discrete random variables which may also
take in�nity as a value with positive probability. In this case,

∞∑
k=0

P(X = k) = 1− P(X =∞) ≤ 1.

For such variables, the de�nition of the generating function

G (z) =
∞∑
k=0

P(X = k)zk

still makes sense, but instead of G (1) = 1, we now have

G (1) ≤ 1,

with
P(X =∞) = 1− G (1).
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Problem 1

A nonnegative discrete random variable has generating function

G (z) =
3

8
+

3

8
z +

1

8
z2 +

1

8
z3.

Determine the distribution of X (that is, the P(X = k) probabilities
for k = 0, 1, 2, . . . ). Calculate its mean and variance as well.

Solution.

P(X = 0) =
3

8
, P(X = 1) =

3

8
,

P(X = 2) =
1

8
, P(X = 3) =

1

8
,

P(X = 4) = P(X = 5) = · · · = 0.
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G ′(z) =
3

8
+

2

8
z +

3

8
z2,

G ′′(z) =
2

8
+

6

8
z

and so
G ′(1) = 1, G ′′(1) = 1

and

E(X ) = G ′(1) = 1,

Var(X ) = G ′′(1) + G ′(1)− (G ′(1))2 = 1+ 1− 12 = 1.
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Problem 2

Alice sends a letter to Bob. Postal service is not very reliable; each
day, the postman will take the letter to the logistics center with
probability 1/3 (regardless of the past). Once the letter is in the
logistics center, each day it is processed with probability 1/5
(regardless of the past). Once it is processed, shipping it takes 1
day. (So at best, the total delivery time is 1 day.) Let X denote the
total delivery time in days. Calculate the generating function and
the mean of X .
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Solution. We can write X as

X = X1 + X2 + X3,

where

X1 is the number of days it takes for the postman to take the
letter to the logistics center,

X2 is the number of days it takes for the logistics center to
process the letter, and

X3 is the number of days shipping takes.

X1,X2 and X3 are independent. What are their distributions?
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Then

X1 ∼ PGEO(1/3), G1(z) =
1

3− 2z
, E(X1) = 2,

X2 ∼ PGEO(1/5), G2(z) =
1

5− 4z
, E(X2) = 4,

X3 = 1, G3(z) = z , E(X3) = 1.

(The information that �at best, the total delivery time is 1 day�
implies that the geometric distributions are pessimistic.)

So

G (z) = G1(z)G2(z)G3(z) =
1

3− 2z
· 1

5− 4z
· z ,

E(X ) = G ′(1) = E(X1) + E(X2) + E(X3) = 2+ 4+ 1 = 7.
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Problem 3

An exam has two parts, A and B. Part B of the exam may be taken
only by students who pass part A. Each student passes part A with
probability 0.6, independent of the others. Each student who passed
part A then passes part B with probability 0.5, independent of the
others. 100 students take this test. Let X denote the number of
students who pass part A, and Y denote the number of students
who pass part B. What is the distribution of X? Calculate GX , the
generating function of X , then derive GY , the generating function
of Y using GX . Can we tell the distribution of Y from GY ?
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Solution. Y can be written as

Y = Z1 + · · ·+ ZX ,

where Z1, . . . ,ZX correspond to students who passed part A, and
Zi is 1 if student i has passed part B and 0 if not.

The Zi 's are iid
with common generating function

GZ (z) = 0.5+ 0.5z .

X ∼ BIN(100, 0.6), so

GX (z) = (0.4+ 0.6z)100, and

GY (z) = GX (GZ (z)) = (0.4+ 0.6(0.5+ 0.5z))100 = (0.7+ 0.3z)100,

which is the generating function of BIN(100, 0.3).
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Another way to see Y ∼ BIN(100, 0.3) is to use total probability.

For each student, the probability that he passes part B can be
calculated as

P(passes B) = P(passes B|passes A)P(passes A)+
+ P(passes B|does not pass A)P(does not pass A) =

= 0.5 · 0.6+ 0 · 0.4 = 0.3,

so each of the 100 students will pass part B with probability 0.3
independently.
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The result can be stated as a lemma in general.

Lemma

If N ∼ BIN(n, p) and X1,X2, . . . are iid with Bernoulli distribution

with parameter q, then

Y = X1 + · · ·+ XN

has distribution BIN(n, pq).
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We roll a fair six-sided die until we get two consecutive sixes. Let
Y denote the number of rolls needed to get two consecutive sixes
(so for the sequence 1462655661, Y = 9). Calculate the generating
function of Y , then the mean of Y . Hint: the theorem of total
expectation applies for the generating function.

Solution. Let X1 denote the number of rolls needed to get the �rst
six.

X1 ∼ GEO(1/6), so the generating function of X is

G1(z) =
∞∑
k=1

1

6

(
5

6

)k−1
zk =

1

6
z

1− 5

6
z
=

z

6− 5z
.
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Alternatively, we can compute G1(z) by total expectation according
to the value of the �rst roll.

If the �rst roll is a six, X1 = 1. This
has probability 1/6.

If the �rst roll is not a 6 (which has probability 5/6), then we rolled
once, and the remaining number of rolls needed has the same
distribution as the original X1.

The corresponding total expectation formula for G1(z) is

G1(z) =
1

6
z +

5

6
zG1(z),

which we can solve to get

G1(z) =
z

6− 5z

again.
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Consider Y next, the number of rolls needed to get two consecutive
sixes. Since we need at least one six �rst, Y can be written as

Y = X1 + X2,

where X1 is again the number of rolls needed to get the �rst six,
and X2 is the number of rolls needed after the �rst six. X1 and X2

are independent, so

GY (z) = G1(z)G2(z).
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We apply total expectation to GY (z) according to the value of the
roll following the �rst 6 roll. If it is also a 6, we are �nished:
X2 = 1 and GY (z) = G1(z)z . This has probability 1/6.

If it is not a 6 (which has probability 5/6), we have to start all over
after X1 + 1 rolls so far. Accordingly,

GY (z) = E(zY ) = G1(z)

(
1

6
z +

5

6
zGY (z)

)
,

which is a linear equation for GY (z) with the solution

GY (z) =
z2

5z2 + 30z − 36
, and G ′Y (1) = 42.
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